Answer:
1 is c 2 is a and 3 is b hope that helped!
Mechanical advantage = ideal mechanical advantage x efficiency = 3.5 x 0.6 = 2.1
The mechanical advantage of the inclined plane is 2.1
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
By definition, we have that the mechanical advantage is given by the following equation:

Where,
W: is the load
T: is the tension
Substituting the values in the given equation we have:

Therefore, the mechanical advantage is equal to 5.
Answer: The mechanical advantage of this machine is: MA = 5
The answer is true
<span>Nuclear Fusion is 2 small nuclei to form one that's bigger</span>