Answer:
560 m
Explanation:
The speed of sound in air is approximately:
v ≈ v₀ + 0.6T
where v₀ is the speed of sound at 0°C (273 K) in m/s, and T is the temperature in Celsius.
The speed of sound at 20°C at that altitude is:
v ≈ 327 + 0.6(20)
v ≈ 339 m/s
The sound travels from the hikers to the mountain and back again, so it travels twice the distance.
339 m/s = 2d / 3.3 s
2d = 1118.7 m
d = 559.35 m
Rounding, the mountain is approximately 560 m away.
Answers is F=7.84 N
Friction force resists the effect of horizontal force and trying to approch to a limiting force.
we have formula for limiting friction force between block and floor
F=Ц N
where N=mg
putting values we get answer.
Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
Answer:
mass
Explanation:
This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.
pls make as brainlieast