1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
15

A 3.06kg stone is dropped from a height of 10.0m and strikes the ground with a velocity of 7.00m/s. What average force of air fr

iction acts on it as it falls?
Physics
1 answer:
xxTIMURxx [149]3 years ago
3 0
<span>22.5 newtons. First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as: E = 0.5mv^2 where E = Energy m = mass v = velocity Substituting known values and solving gives: E = 0.5 3.06 kg (7 m/s)^2 E = 1.53 kg 49 m^2/s^2 E = 74.97 kg*m^2/s^2 Now ignoring air resistance, how much energy should the rock have had? We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So 3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2 So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is 299.88 J - 74.97 J = 224.91 J So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division. 224.91 J / 10 m = 224.91 kg*m^2/s^2 / 10 m = 22.491 kg*m/s^2 = 22.491 N Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>
You might be interested in
Ice skaters often end their performances with spin turns, where they spin very fast about their center of mass with their arms f
vampirchik [111]

Answer:

\large \boxed{\text{30 rev/s}}

Explanation:

This question is based on the Law of Conservation of Angular Momentum.

Angular momentum (L) equals the moment of inertia (I) times the angular speed (ω).

L = Iω

If momentum is conserved,

I₁ω₁ = I₂ω₂

Data:

 I₁ = 3.5    kg·m²s⁻¹

ω₁ = 6.0    rev·s⁻¹

 I₂ = 0.70 kg·m²s⁻¹

Calculation:

\begin{array}{rcl}I_{1}\omega_{1} &= &I_{2}\omega_{2}\\\text{3.5 kg$\cdot$m$^{2}$}\times \text{6.0 rev/s} &= &\text{0.70 kg$\cdot$m$^{2}$}\times\omega_{2}\\\text{21 rev/s} &= &0.70\omega_{2}\\\omega_{2} & = & \dfrac{\text{21 rev/s}}{0.70}\\\\&=&\textbf{30 rev/s}\\\end{array}\\\text{The skater's final rotational speed is $\large \boxed{\textbf{30 rev/s}}$}

8 0
3 years ago
Light travels through a liquid at 2.25e8 m/s. What is the index of refraction of the liquid?
Pavlova-9 [17]

Answer:

The index of refraction of the liquid is n = 1.33 equivalent to that of water

Explanation:

Solution:-

- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.

- The index of refraction is material property and proportional to density of the material.

- The denser the material the slower the light will move through associated with considerable diffraction angles.

- The lighter the material the faster the light pass through the material without being diffracted as much.

- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.

- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.

- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.

- The light passes through a liquid with speed v = 2.25*10^8 m/s :

                         n = c / v\\\\n = \frac{ 3*10^8 }{2.25*10^8} \\\\n = 1.33

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.    

         

8 0
3 years ago
Read 2 more answers
If you could travel with speed of light (3.0e5 km/s) it would take only 2.5 minutes to reach venus. how far is venus from earth
motikmotik
D=S/T ,S=3.0e5km/s × 2.5min×60
D=4.5×e6km
7 0
3 years ago
The resistivity of a semiconductor can be modified by adding different amounts of impurities. A rod of semiconducting material o
zavuch27 [327]

Answer:

pp

Explanation:

7 0
2 years ago
Which of the following statements is true regarding electromagnetic waves traveling through a vacuum?
kap26 [50]

Answer:

C. All waves have the same speed.

Explanation:

Wave equation is given as;

V = fλ

where;

V is the speed of the wave

f is the frequency of the wave

λ is the wavelength

The speed of the wave depends on both wavelength and frequency

The speed of the electromagnetic waves in a vacuum is 3 x 10⁸ m/s, this also the speed of light which is constant for all electromagnetic waves.

Therefore, the correct option is "C"

C. All waves have the same speed.

6 0
3 years ago
Other questions:
  • Teams A and B are in a tug-of-war challenge. Team A wins the challenge. What can be said about Team A?
    14·1 answer
  • When Kevin pulls his cotton shirt off his body, the electrons get transferred from the (shirt or body) to the (shirt or body) .
    13·1 answer
  • What is the limitation of relative dating?
    12·1 answer
  • A small but measurable current of 5.8 × 10-10 A exists in a copper wire whose diameter is 3.0 mm. The number of charge carriers
    11·2 answers
  • The voltage in a battery is 9 volts. The resistance is 3 ohms.<br><br> What is the current?
    9·2 answers
  • If a Man suit a spare at a place where
    11·1 answer
  • What type of energy is stored in a pendulum at the top of its arc?
    7·2 answers
  • which research model refers to the study of an individual group or community over a predetermined period
    10·1 answer
  • What is the speed of an 800 kg automobile if it has a kinetic energy of 9.00 x 10^J?
    5·1 answer
  • What is the structural unit of a substance called​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!