Answer:
Step-by-step explanation:
For the limit of a function to exist, then the right hand limit of the function must be equal to its left hand limit as shown;
If the function is f(x), for f(x) to exist then;
![\lim_{n \to a^{+} } f(x) = \lim_{n \to a^{-} } f(x) = \lim_{n \to a } f(x)](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20a%5E%7B%2B%7D%20%7D%20f%28x%29%20%3D%20%20%5Clim_%7Bn%20%5Cto%20a%5E%7B-%7D%20%7D%20f%28x%29%20%3D%20%20%5Clim_%7Bn%20%5Cto%20a%20%7D%20f%28x%29)
Given the function;
![f(x) = \left \{ {{x+9\ x](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5Cleft%20%5C%7B%20%7B%7Bx%2B9%5C%20x%3C9%7D%20%5Catop%20%7B9-x%20%5C%20x%20%5Cgeq%209%7D%7D%20%5Cright%5C%5C)
Lets check if the above statement is true.
The right hand limit of the function occurs at x> 9
f(x) = 9-x
![\lim_{x \to 9+} (9-x)\\= 9-9\\= 0](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%209%2B%7D%20%289-x%29%5C%5C%3D%209-9%5C%5C%3D%200)
The left hand limit occurs at x<9
f(x) = x+9
![\lim_{x \to 9^{-} } (x+9)\\= 9+9\\= 18](https://tex.z-dn.net/?f=%5Clim_%7Bx%20%5Cto%209%5E%7B-%7D%20%7D%20%28x%2B9%29%5C%5C%3D%209%2B9%5C%5C%3D%2018)
From the above calculation, it can be seen that
, this shows that the function given does not exist at the given point.