Answer:
So A we cant sadly do because we cant draw. B is going to be kinetic. Thats because static friction means it stays in one place, for kinetic it means moving. So it will be 0.05 as the coefficient of the friction. Sadly, I cannot calculate C. You will have to use trigonemetry but I cannot fit that big an explanation.
Answer to A: the free body diagram would be the ski things inclined with gravity, friction, and air resistance. I except you know which directions
Answer to B: Kinetic friction is the answer.
Answer to C: Find on own, I cannot write super big explanations - use trigonometry.
I believe it is because of weight if Timmy is larger and bigger than Maria that would mean he would stop slower just because of his bodyweight pushing on the back of the skateboard while Maria is all those skinny and she doesn’t have as much weight as she can go farther
The correct answer is option B, representational
All the painters in Peale family were involved in paintings which represent the day today life activities or were portraits or mimic some natural forms.
Charles Willson Peale , the head of the Peale family was known for painting sixty portraits of the first American president, George Washington. He also painted portraits of portraits of notable people of the society such as Benjamin Franklin, Thomas Jefferson etc.
Most of the paintings of peale family were based on the theme of family, art and science. Six of Peale’s son were known for their renaissance paintings. His oldest son Raphelle was known for still life paintings.
Titian Ramsay Peale, Charles’ youngest son was a naturalist painter.
Answer:

Explanation:
Given
-- initial velocity
--- height
Required
Determine the time to hit the ground
This will be solved using the following motion equation.

Where

So, we have:


Subtract 30.2 from both sides





Solve using quadratic formula:

Where




Split the expression
or 
or 
Time can't be negative; So, we have:


Hence, the time to hit the ground is 1.82 seconds
Answer:
The quantitative relationship between heat transfer and temperature change contains all three factors: Q = mcΔT, where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat necessary to change the temperature of 1.00 kg of mass by 1.00ºC. The specific heat c is a property of the substance; its SI unit is J/(kg ⋅ K) or J/(kg ⋅ ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg ⋅ ºC).
Explanation: