The candle flame releases hot gases, which directly go in upwards directions. Due to which the air near the flame of the candle is very hot and dense. The particles along with vapour move up. And since the sideways, the air is not very dense and hot, we are able to hold the candle. In anti-gravity region, there will be no density differences and also, the convection process wont occur. So, the candle quickly snuffs off.
Room that wont bother other people... instruments a stereo, and a sound system
E=mc2 or MC Squared as in (mass energy equivalence)
Answer:
141
Explanation:
The atomic number (Z) corresponds to the number of protons:
Z = p
while the mass number (A) corresponds to the number of protons+neutrons:
A = p + n
So the number of neutrons in a nucleus is equal to the difference between mass number and atomic number:
n = A - Z
For the initial nucleus of Uranium, Z = 92 and A = 235, so the initial number of neutrons is
n = 235 - 92 = 143
An alpha particle carries 2 protons and 2 neutrons: so, when the isotope of Uranium emits an alpha particle, it loses 2 neutrons. Therefore, the number of neutrons after the decay will be
n = 143 - 2 = 141