A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
Explanation:
Given
The enthalpy of formation of RbF (s) is –557.7kJ/mol
The standard enthalpy of formation of RbF (aq, 1 m) is –583.8 kJ/mol
The enthalpy of solution of RbF = Enthalpy of RbF (aq) - Enthalpy of formation of RbF (s)
= -583.8 - (-557.7) kJ/mol
= -26.1 kJ/mol
The enthalpy is negative which means that the temperature will rise when RbF is dissolved.
a chemical property of iron is the ability to change it, hammer it, roll it, shape it etc
It is harder to remove an electron from fluorine than from carbon because the size of the nuclear charge in fluorine is larger than that of carbon.
The energy required to remove an electron from an atom is called ionization energy.
The ionization energy largely depends on the size of the nuclear charge. The larger the size of the nuclear charge, the higher the ionization energy because it will be more difficult to remove an electron from the atom owing to increased electrostatic attraction between the nucleus and orbital electrons.
Since fluorine has a higher size of the nuclear charge than carbon. More energy is required to remove an electron from fluorine than from carbon leading to the observation that; it is harder to remove an electron from fluorine than from carbon.
Learn more: brainly.com/question/16243729
Answer:

Explanation:
The breakdown reaction of ozone is as follows




It can be seen that 2 moles of ozone is required in the complete cycle
So for 10 cycles, 20 moles of ozone is required
m = Mass of
= 15.5 g
M = Molar mass of
= 104.46 g/mol
P = Pressure = 24.5 mmHg
T = Temperature = 232 K
R = Gas constant = 
Number of moles is given by


From ideal gas law we have

For 20 cycles of the reaction the volume of the ozone is
.