<u>Answer:</u> The mass of second isotope of indium is 114.904 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the mass of isotope 2 of indium be 'x'
Mass of isotope 1 = 112.904 amu
Percentage abundance of isotope 1 = 4.28 %
Fractional abundance of isotope 1 = 0.0428
Mass of isotope 2 = x amu
Percentage abundance of isotope 2 = [100 - 4.28] = 95.72 %
Fractional abundance of isotope 2 = 0.9572
Average atomic mass of indium = 114.818 amu
Putting values in equation 1, we get:
![114.818=[(112.904\times 0.0428)+(x\times 0.9572)]\\\\x=114.904amu](https://tex.z-dn.net/?f=114.818%3D%5B%28112.904%5Ctimes%200.0428%29%2B%28x%5Ctimes%200.9572%29%5D%5C%5C%5C%5Cx%3D114.904amu)
Hence, the mass of second isotope of indium is 114.904 amu
You have to use avagados number... so toy take your starting number and multiple by 1/avagados number which is like 6.002^23 and that will equal your number of males... avagado always associates with moles... look up that exact number though bc I cant remember it
Answer:
the chocolate
Explanation:
You are changing the amount of chocolate
Answer:
12.01 grams per mole
Explanation:
theres no sample or example so if theres grams of Carbon, convert it to moles using 12.01g/mol
c. the answer is radioactive elements are useful for dating materials