Answer:
The pressure of the gas increased (if temperature remained constant).
The Boyle's law supports this observation.
Explanation:
The initial measurements of the gas are given as;
volume = 100 L
Pressure = 300 kpa
The second measurement is given as;
Volume = 75 L
The second reading implies that the volume of the gas has decreased. If the temperature of the gas remained constant, then the pressure must have increased according to the Boyle's law;
At constant temperature, the pressure of a given mass of an ideal gas is inversely proportional to its volume.
Ofc porcelain crucible is a high efficiency material and It can be used as a test piece, retort, but the most common use is as a smelting vessel which is used in furnaces or fire with direct flame.
Answer:

Explanation:
MM: 74.09 136.14
H₂SO₄ + Ca(OH)₂ ⟶ CaSO₄ + 2H₂O
m/g: 4.53
1. Theoretical yield
(a) Moles of Ca(OH)₂

(b) Moles of CaSO₄

(c) Theoretical yield

2. Percent yield


Answer: I'm pretty sure it's D
Explanation :I hope
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522