The substance that is made of atoms of more than one type bound together is called an atomic bond or a multi bond
The fundamental frequency of the tube is 0.240 m long, by taking air temperature to be
C is 367.42 Hz.
A standing wave is basically a superposition of two waves propagating opposite to each other having equal amplitude. This is the propagation in a tube.
The fundamental frequency in the tube is given by

where, 
Since, T=37+273 K = 310 K
v = 331 m/s

Using this, we get:

Hence, the fundamental frequency is 367.42 Hz.
To learn more about Attention here:
brainly.com/question/14673613
#SPJ4
Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.
Answer:
C. 590 mph

Explanation:
Given:
- velocity of jet,

- direction of velocity of jet, east relative to the ground
- velocity of Cessna,

- direction of velocity of Cessna, 60° north of west
Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.
Refer the attached schematic.
So,

&


Now the vector of relative velocity of Cessna with respect to jet:



Now the magnitude of this velocity:

is the relative velocity of Cessna with respect to the jet.
Echo sounding is a type of SONAR used to determine the depth of water by transmitting sound pulses into water. The time interval between emission and return of a pulse is recorded, which is used to determine the depth of water along with the speed of sound in water at the time.