Answer:
hola me llamo bruno y tu?
Explanation:
pero yo soy de mexico
Answer:
the pressure at the depth is 1.08 ×
Pa
Explanation:
The pressure at the depth is given by,
P = h
g
Where, P = pressure at the depth
h = depth of the Pacific Ocean in the Mariana Trench = 36,198 ft = 11033.15 meter
= density of water = 1000 
g = acceleration due to gravity ≈ 9.8 
P = 11033.15 × 9.8 × 1000
P = 1.08 ×
Pa
Thus, the pressure at the depth is 1.08 ×
Pa
Answer:
F = 41,954 N
Explanation:
given,
mass of bucket = 580 Kg
length of the cable = 20 m
velocity = 40 m/s
angle made = 38.0°
T cos 38° = m g..............(1)
T sin 38^0 = \dfrac{mv^2}{l} + F......(2)
dividing equation (2) by (1)



F = -46400 + 4445.36
F = -41,954 N
hence, the force is acting in the opposite direction as assumed.
F = 41,954 N
Answer:
6.21 m/s
Explanation:
Using work energy equation then

where d is displacement from initial to final position, v is velocity and subscripts a and b are position A and B respectively, m is mass of collar, g is acceleration due to gravity
Substituting 1 Kg for m, 0.4m for h,
as 0, 9.81 for g then

Answer:
Explanation:
E=(σ/ε0)
As noted by Dirac the field is the same no matter how far you are from the sheet. When your charge covers a conducting plane, as in your case, the field is, D/eo ,(D is charge density). Because the field inside the conductor (no matter how thin) is zero. The only time the field is, D/2eo, is when you have just a sheet of charge, by itself, not on a conducting plane."