Answer:
An apple hanging at a branch has potential energy due its position. It can be written as PE= mgh where m is the mass of the apple h is the distance between the apple and the ground and g is the acceleration due to gravity.
as the apple falls from the tree it loses its potential energy and gains kinetic energy due to the movement of the apple. Its kinetic energy will be given by KE= 1/2mv² where m is the mass of the apple and v is the speed with which the apple falls.
As the apple falls the height or the distance reduces and PE becomes reduces. But it gains Kinetic energy due to its speed.
But when the apple falls to the ground and comes to rest its kinetic energy is converted to potential energy.
thus the total energy remains the same. it changes from one form to the other but remains unaltered.
Answer:
The length of the bond is determined by the number of bonded electrons (the bond order). The higher the bond order, the stronger the pull between the two atoms and the shorter the bond length. Generally, the length of the bond between two atoms is approximately the sum of the covalent radii of the two atoms.
Explanation:
Answer:
Explanation:
Since the compass uses a magnetic field, if anything else magnetic is near it, the compass will start acting up. Making it unreliable so keep magnets away!
Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
A manufacturer of printed circuit boards has a design
capacity of 1,000 boards per day. the effective capacity, however, is 700
boards per day. recently the production facility has been producing 950 boards
per day. The design capacity utilization is (950/100) *100 = 95 %