Explanation:
laws of physics which apply when you are at rest on the earth also apply when you are in any reference frame which is moving at a constant velocity with respect to the earth. For example, you can toss and catch a ball in a moving bus if the motion is in a straight line at constant speed.
As one moves across a period, from left to right, both the number of protons and electrons of a neutral atom increase. The enhancing number of electrons and protons results in a greater attraction between the electrons and the nucleus. This uplifted attraction pulls the electrons nearer to the nucleus, therefore, reducing the size of the atom.
On the other hand, while moving down a group, there is an increase in the number of energy levels. The enhanced number of energy levels increases the size of the atom in spite of the elevation in the number of protons. In the outermost energy levels, the protons get attracted towards the nucleus, however, the attraction is less due to an increase in the distance from the nucleus.
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.