Answer:
2.951 × 10⁻⁵ M
Explanation:
Let's consider the acid reaction of hydrobromic acid according to Brönsted-Lowry acid-base theory.
HBr(aq) + H₂O(l) ⇒ Br⁻(aq) + H₃O⁺(aq)
Given the pH = 4.530, we can calculate the concentration of the hydronium ion using the following expression.
pH = -log [H₃O⁺]
[H₃O⁺] = antilog -pH = antilog -4.530 = 2.951 × 10⁻⁵ M
Answer:
Just use a text book.. So that you get the concept
I believe it was James Hutton
Answer:
18 * 10^19 atoms
Explanation:
We must first convert 57.8 mg to grams.
If 1000 mg = 1g
57.8 mg = 57.8/1000 = 57.8 * 10^-3 g
Now;
If 1 gold atom has a mass of 3.27X10^-22 grams
x gold atoms have a mass of 57.8 * 10^-3 g
x = 57.8 * 10^-3 g/3.27X10^-22 g
x = 18 * 10^19 atoms
The arrow that will represent the phase change that involves the same amount of energy as arrow 1 will be arrow 4.
<h3>Phase change</h3>
Arrow 1 represents a phase change from liquid to gas while arrow 4 represents a phase change from gas to liquid.
In other words, arrow 1 and arrow 4 are direct opposites of one another,
This means that if X amount of energy is required for arrow 1, the same amount of energy will be needed for arrow 4 but in the reverse direction.
More on phase change can be found here: brainly.com/question/12390797
#SPJ1