Answer:
82.8986 km
Explanation:
Given:
Pressure = 7.00×10⁻¹³ atm
Since , 1 atm = 101325 Pa
So, Pressure = 7.00×10⁻¹³×101325 Pa = 7.09275×10⁻⁸ Pa
Radius = 2.00×10⁻¹⁰ m
Diameter = 4.00×10⁻¹⁰ m (2× Radius)
Temperature = 303 K
The expression for mean free path is:

Boltzmann Constant = 1.38×10⁻²³ J/K
So,

<u>Mean free path = 82.8986×10³ m = 82.8986 km</u>
<span>When an electric current flows through a long conductor, each free electron moves from one end of the other end. When an electric field is applied to a conductor (a wire) the free electrons of the conductor are subject to an electric force which will cause the electrons to move. Given that the electrons are negatively charged they will move counter-wise the field.. Each end of the wire is attached to one pole or end of a battery (or generator of electricity) then the electrons will move form the end joined to the negative pole toward the end attached to positive pole.</span><span />
Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.
Explanation:
it is given that, the linear charge density of a charge, 
Firstly, we can define the electric field for a small element and then integrate for the whole. The very small electric field is given by :
..........(1)
The linear charge density is given by :


Integrating equation (1) from x = x₀ to x = infinity



Hence, this is the required solution.