Answer:
The magnitude of the force the light beam exerts on the man is 5.9 x 10⁻⁵N
(b) the force the light beam exerts is much too small to be felt by the man.
Explanation:
Given;
cross-sectional area of the man, A = 0.500m²
intensity of light, I = 35.5kW/m²
If all the incident light were absorbed, the pressure of the incident light on the man can be calculated as follows;
P = I/c
where;
P is the pressure of the incident light
I is the intensity of the incident light
c is the speed of light

F = PA
where;
F is the force of the incident light on the man
P is the pressure of the incident light on the man
A is the cross-sectional area of the man
F = 1.18 x 10⁻⁴ x 0.5 = 5.9 x 10⁻⁵ N
The magnitude of the force the light beam exerts on the man is 5.9 x 10⁻⁵ N
Therefore, the force the light beam exerts is much too small to be felt by the man.
1-fixation ( Bacteria Converts nitrogen to ammonium so plants can use it )
2-nitrification ( bacteria changes ammonium to nitrates and plants )
3 - Assimilation (plants absorb nitrates it is then used for Chlorophyll..)
They are all units of measure of length
Explanation:
Length is a scalar quantity representing a distance between two points, and it can be expressed in different units.
The SI units of the length is the metre (m), which is defined as the length of the path travelled by light in vacuum during a time interval of 1/299,792,458 of a second.
A unit which is common used is a multiple of the meter, the kilometre (km) which corresponds to 1000 metres:
1 km = 1000 m
Another unit used in the UK system is the mile (mi), where the conversion factor between miles and metres is
1 mi = 1609.34 m
Finally, these units are not suitable to be used to measure astronomical distances - such as those between stars and galaxies. For this, another unit is used, which is the light-year (ly), which corresponds to the distance travelled by the light in a vacuum in one year, and its conversion factor to the metre is:

Learn more about distance here:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
I should be active for 15 hours to meet the physical activity requirement.
Explanation:
Since time dilates in moving objects, we use the formula t = t₀/√(1 - β²) where t = time in space vehicle, t₀ = time on earth = 9 hours and β = v/c where v = speed of space vehicle = 0.8c.
So, t = t₀/√(1 - β²)
t = 9/√(1 - (v/c)²)
= 9/√(1 - (0.8c/c)²)
= 9/√(1 - (0.8)²)
= 9/√(1 - (0.64)
= 9/√0.36
= 9/0.6
= 15 hr
So, according to a timer on the space vehicle, I should be active for 15 hours to meet the physical activity requirement.