A gentle slope requires less force over a longer distance as compared to steep slope.
Explanation:
Mechanical advantage of a slope is equal to the ratio of length of slope and the height. A steep slope has shorter length as compared to a gentle slope for the same height. Therefore, mechanical advantage of a gentle slope is more than that of a steep slope. Hence, a gentle slope requires less force over a long distance than a steep slope.
The pet store would be the reference point because it is where he started and it will not move. Hope this helped.
Answer:
= 3521m/s
The tangential speed is approximately 3500 m/s.
Explanation:
F = m * v² ÷ r
Fg = (G * M * m) ÷ r²
(m v²) / r = (G * M * m) / r²
v² = (G * M) / r
v = √( G * M ÷ r)
G * M = 6.67 * 10⁻¹¹ * 5.97 * 10²⁴ = 3.98199 * 10¹⁴
r = 32000km = 32 * 10⁶ meters
G * M / r = 3.98199 * 10¹⁴ ÷ 32 * 10⁶
v = √1.24 * 10⁷
v = 3521.36m/s
The tangential speed is approximately 3500 m/s.
To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:


Here,
m = mass
v = Velocity
Our values are given as,


Replacing,


Therefore the mechanical energy lost due to friction acting on the runner is 907J