1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
12

A 79.7 kg base runner begins his slide into second base while moving at a speed of 4.77 m/s. The coefficient of friction between

his clothes and Earth is 0.635. He slides so that his speed is zero just as he reaches the base. The acceleration of gravity is 9.8 m/s 2 . What is the magnitude of the mechanical energy lost due to friction acting on the runner? Answer in units of J.
Physics
1 answer:
SashulF [63]3 years ago
6 0

To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:

\Delta W = \Delta KE

\Delta W = \frac{1}{2} mv^2

Here,

m = mass

v = Velocity

Our values are given as,

m = 79.7kg

v = 4.77m/s

Replacing,

\Delta W = \frac{1}{2} (79.7kg)(4.77m/s)^2

\Delta W = 907J

Therefore the mechanical energy lost due to friction acting on the runner is 907J

You might be interested in
What current is used to power the United States power grid?
alexdok [17]
The answer is Alternating Current
3 0
2 years ago
Read 2 more answers
S To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volum
erastovalidia [21]

To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V the ratio of the sphere will be \frac{4.83598}{c^{\frac{1}{3} } }.

We know that the surface area and volume of the sphere is given by:

A=4 \pi r^{2}\\V=\frac{4}{3} \pi r^{3}

Therefore, the ratio between the surface area and the volume for the sphere will be:

\frac{A}{V}=\frac{4 \pi r^{2}\\}{\frac{4}{3} \pi r^{3}}=\frac{3}{r}

Equating the volume to the constant c, we will find the value of r.

V=c=\frac{4}{3} \pi r^{3}\\r= (\frac{3c}{4\pi} )^{\frac{1}{3} }

Substituting the value of r in the ration between surface area and volume, we get:

\frac{A}{V}=\frac{3}{ (\frac{3c}{4\pi} )^{\frac{1}{3} }}

Calculating the constants, we get:

\frac{4.83598}{c^{\frac{1}{3} } }

Hence, the ration between surface area and volume is \frac{4.83598}{c^{\frac{1}{3} } }

To learn more about surface area and volume of sphere, refer to:

brainly.com/question/4387241

#SPJ4

3 0
1 year ago
A 100 Kg man is diving off a 50 meter cliff. What is his kinetic energy when he is 20 meters from the water?
iren2701 [21]

Answer:

K.E=29.403125J

Explanation:

From the question we are told that

Mass M=100

Height 50-20=30m

Generally the equation for velocity before impact is is is mathematically given by

v=\sqrt{2gh}

v=\sqrt{2*9.8*30}

v=24.25

Generally the equation for Kinetic Energy is is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*100*(24.25)^2\\

K.E=29403.125J

K.E=29.403125J

8 0
3 years ago
A cylinder of diameter 100 mm rolls from restdown a 5 m long ramp and its center of mass is moving with velocity 2 m/s at the bo
RoseWind [281]

Answer:

(a): a = 0.4m/s²

(b): α = 8 radians/s²

Explanation:

First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):

a= (Vf-Vi)/t = (2m/s)/t

a: linear acceleration.

Vf: speed at the end of the ramp.

Vi: speed at the beginning of the ramp (zero).

d= (1/2)×a×t² = 5m

d: distance of the ramp (5m).

We replace the first equation in the second to determine the travel time on the ramp:

d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s

And the linear acceleration will be:

a = (2m/s)/5s = 0.4m/s²

Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:

perimeter = π×diameter = π×0.1m = 0.3142m

To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:

α = (0.4m/s²)/(0.05m) = 8 radians/s²

α: angular aceleration.

3 0
3 years ago
Solve for the length of the inclined plane if the angle equals 19.45 degrees.
mel-nik [20]

The length of the inclined plane is approximately 12 ft

The situation forms a right angle triangle.

<h3>Right triangle</h3>

Right triangle have one of its angle as 90 degrees.

Therefore,

The length of the inclined plane is the hypotenuse of the triangle. The length of the inclined plane can be found using trigonometric ratios.

height = 4 ft

angle(∅) = 19.45°

sin 19.45 = 4 / h

h = 4 / 0.33298412235

h = 12.0125847796

h = 12 ft

Therefore, the length of the inclined plane is approximately 12 ft

learn more on inclined plane:brainly.com/question/14163589?referrer=searchResults

5 0
2 years ago
Other questions:
  • I’m which medium does sound travel fastest railroad track or across the room
    8·1 answer
  • A 1 170.0 kg car traveling initially with a speed of 25.000 m/s in an easterly direction crashes into the back of a 9 800.0 kg t
    9·1 answer
  • 3. what could you do to increase the precision of your measurements? What factors limit the
    8·1 answer
  • What do you call a wave that is made up of electromagnetic feilds
    9·2 answers
  • Which statement accurately describes science?
    13·1 answer
  • Create a following distance greater than 3 seconds ahead when_______. a driver behind you is trying to pass you are not in a hur
    11·1 answer
  • Who knows this how to do this
    10·1 answer
  • What is the formula for Charles Law?
    9·1 answer
  • Kahalagahan ng diagram​
    12·2 answers
  • What are some guidelines for preventing quackery and fraud when shopping? Select
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!