1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
2 years ago
9

A second- order reaction of the type A + B -->P was carried out in a solution that was initially 0.075 mol dm^-3 in A and 0.0

50 mol dm^-3 in B. After 1.0 h the concentration of A had fallen to 0.020 mol dm^-3. a) Calculate the Rate constant. b) Solve for the half- life of each of the reactants.
Hint: Answers are a) 16.2 dm^3/mol*h
b) 5.1 × 10^3 s, 2.1 × 10^3 s
Chemistry
1 answer:
andriy [413]2 years ago
3 0

Answer:

a) 16.2 dm^3/mol*h

b) 6.1 × 10^3 s, 2.5 × 10^3 s (it is different to the hint)

Explanation:

We can use the integrated rate equation in order to obtain k.

For the reaction A+ B --> P the reaction rate is written as

Rate = -\frac{dC_A}{dt} = -\frac{dC_B}{dt} = \frac{dC_P}{dt} = kC_AC_B

If C_{A0} and C_{B0} are the inital concentrations and x the concentration reacted at time t, so C_A=C_{A0} -x and C_B=C_{B0} -x and the rate at time t is written as:

-\frac{dx}{dt} =-k(C_{A0} -x)(C_{B0}-x)

Separating variables and integrating

\int\limits^x_0 {\frac{1}{(C_{A0}-x)(C_{B0}-x)} } \, dx = \int\limits^t_0 {k} \, dt

The integral in left side is solved by partial fractions, it can be used integral tables

\frac{1}{C_{B0}-C_{A0}}(ln\frac{C_{A0}}{C_{A0}-x}-ln\frac{C_{B0}}{C_{B0}-x}) =kt

Using logarithm properties (ln x - ln y = ln(x/y))

\frac{1}{C_{B0}-C_{A0}}(ln\frac{C_{A0}C_{B}}{C_{A}C_{B0}}) =kt

Using the given values k can be calculated. But the data seems inconsistent since if the concentration of A changes from 0.075 to 0.02 mol dm^-3 it implies that 0.055 mol dm^-3 of A have reacted after 1 h, so according to the reaction given the same quantity of B should react, and we only have a C_{B0} of 0.05 mol dm^-3.

Assuming that the concentration of B fall to 0.02 mol dm^-3 (and not the concentration the A). So we arrive to the answer given in the Hint.

So, the values given are t= 1, C_{A0}=0.075, C_{B0}=0.05, C_{B}=0.02, it implies that the quantity reacted, x, is 0.03 and C_{A}=0.075-x = 0.045. Then, the value of k would be

kt = \frac{1}{0.05-0.075}(ln\frac{0.075*0.02}{0.045*0.05})

k = 16.21 \frac{dm^3}{mol*1h}

b) the question b requires calculate the time when the concentration of the specie is half of the initial concentration.

For reactant A, It is solved with the same equation

\frac{1}{C_{B0}-C_{A0}}(ln\frac{C_{A0}C_{B}}{C_{A}C_{B0}}) =kt

but suppossing that C_A= C_{A0}/2=0.0375 so  C_B=C_{B0}- C_{A0}/2=0.0125, k=16.2 and the same initial concentrations. Replacing in the equation

t=\frac{1}{16.2(0.05-0.075)}(ln\frac{0.075*0.0125}{0.0375*0.05})

t=1.71 h = 1.71*3600 s = 6.1*10^3 s  

For reactant B, C_B= C_{B0}/2=0.025 so  C_A=C_{A0}- C_{B0}/2=0.05, k=16.2 and the same initial concentrations. Replacing in the equation

t=\frac{1}{16.2(0.05-0.075)}(ln\frac{0.075*0.025}{0.05*0.05})

t=0.71 h = 0.7*3600 s = 2.5*10^3 s  

Note: The procedure presented is correct, despite of the answer be something different to the given in the hint, I obtain that result if the k is 19.2... (maybe an error in calculation of given numbers)

You might be interested in
In an electron dot diagram of propane (C3H8), how many double bonds are present?
NeX [460]

Answer:- none

Explanations:- For naming hydrocarbons we use the suffix -ane, -ene and -yne.

-ane is used when we have only single bonds between all carbons. -ene is used if there is any double bond between two carbons and the -yne is used if there is any triple bond between two carbons.

The given name of the compound is propane. It ends at -ane and so it's an alkane and must have single bonds between all the carbons it has. So, there are zero double bonds present in C_3H_8 .

This is also clear from the below lewis dot structure of the compound.


4 0
3 years ago
Read 2 more answers
Cite two important quantum-mechanical concepts associated with the Bohr model of the atom.(b) Cite two important additional refi
Alenkinab [10]

Answer: Bohr postulated that electronic energy levels are quantized. Secondly, a photon of light of a particular frequency is emitted when electrons move from a higher to a lower energy levels.

Explanation:

The Bohr model of the atom is the immediate predecessor of the wave mechanical model of the atom. The wave mechanical model refined the Bohr's model by treating the electron as a wave having a wave function psi. The wave function describes the identity of the electron. From Heisenberg uncertainty principle, the position of a particle cannot be accurately and precisely measured. Hence the wave mechanical model added that electrons are not localized in orbits according to Bohr's model but the integral of psi squared dx gives the probability of finding the electron within a given space.

8 0
2 years ago
Read 2 more answers
A water sample is found to contain 59 ppm
NeX [460]

Explanation:

k so basically u gotta do 59/1000000 then multiply that by 972 which gives u 0.057348

8 0
3 years ago
Damage to which of the following would disrupt the process of photosynthesis?
Marta_Voda [28]
A, the chloroplast is where photosynthesis occurs

8 0
2 years ago
Salt is often added to water to raise the boiling point to heat food more quickly. if you add 30.0g of salt to 3.75kg of water,
sammy [17]

Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.

<h3>What is the boiling-point elevation?</h3>

Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.

  • Step 1: Calculate the molality of the solution.

We will use the definition of molality.

b = mass solute / molar mass solute × kg solvent

b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m

  • Step 2: Calculate the boiling-point elevation.

We will use the following expression.

ΔT = Kb × m × i

ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C

where

  • ΔT is the boiling-point elevation
  • Kb is the ebullioscopic constant.
  • b is the molality.
  • i is the Van't Hoff factor (i = 2 for NaCl).

The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:

100 °C + 0.140 °C = 100.14 °C

Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.

Learn more about boiling-point elevation here: brainly.com/question/4206205

7 0
2 years ago
Other questions:
  • Select the message that most accurately fits the passage.
    13·2 answers
  • How much mass is in 100 ml of water
    8·1 answer
  • State the number of electrons that must be lost by atoms of
    6·1 answer
  • In a particular experiment, 2.50-g samples of each reagent are reacted. The theoretical yield of lithium nitride is ________ g.
    6·1 answer
  • List the celestial bodies from smallest to largest based on their actual size.
    11·1 answer
  • There are two naturally occurring isotopes of chlorine. 35 Cl has a mass of 34.9689 u. 37 Cl has a mass of 36.9659 u. Determine
    10·1 answer
  • Which EMW can humans see?
    11·1 answer
  • Find the mole fraction of benzene and toluene in solution containing​
    9·1 answer
  • What do these two changes have in common? rain forming in a cloud water freezing into ice
    6·1 answer
  • What characterizes an electrolytic cell?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!