Answer:
Gas chromatography is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture
as chromatography is a term used to describe the group of analytical separation techniques used to analyze volatile substances in the gas phase. In gas chromatography, the components of a sample are dissolved in a solvent and vaporized in order to separate the analytes by distributing the sample between two phases: a stationary phase and a mobile phase. The mobile phase is a chemically inert gas that serves to carry the molecules of the analyte through the heated column. Gas chromatography is one of the sole forms of chromatography that does not utilize the mobile phase for interacting with the analyte. The stationary phase is either a solid adsorbant, termed gas-solid chromatography (GSC), or a liquid on an inert support, termed gas-liquid chromatography (GLC).
Introduction
In early 1900s, Gas chromatography (GC) was discovered by Mikhail Semenovich Tsvett as a separation technique to separate compounds. In organic chemistry, liquid-solid column chromatography is often used to separate organic compounds in solution. Among the various types of gas chromatography, gas-liquid chromatography is the method most commonly used to separate organic compounds. The combination of gas chromatography and mass spectrometry is an invaluable tool in the identification of molecules. A typical gas chromatograph consists of an injection port, a column, carrier gas flow control equipment, ovens and heaters for maintaining temperatures of the injection port and the column, an integrator chart recorder and a detector.
To separate the compounds in gas-liquid chromatography, a solution sample that contains organic compounds of interest is injected into the sample port where it will be vaporized. The vaporized samples that are injected are then carried by an inert gas, which is often used by helium or nitrogen. This inert gas goes through a glass column packed with silica that is coated with a liquid. Materials that are less soluble in the liquid will increase the result faster than the material with greater solubility.The purpose of this module is to provide a better understanding on its separation and measurement techniques and its application.
Explanation:
Purpose of gas chromatography
The main purpose of the gas chromatography technique is to separate the compounds that possess:
-
High volatility
- Low molecular weights
- Thermal stability
Answer:
boiling point is the physial property of matter
Answer:
A) H₂O at 120°C
Explanation:
It is possible to think the higher temperature, the greatest degree of disorder. That is because with a high temperature, vibrations of molecules increases.
In general, at low temperatures, the molecules are in solid state (The lowest degree of disorder), increasing its temperature, molecules becomes in liquids, and, with more temperature, are gases (The greatest degree of disorder).
Thus, the sample that has the greatest degree of disorder is:
<h3>A) H₂O at 120°C</h3>
<span>The correct answer is letter "d. It's used to make paper products." Cellulose is considered to be a major material used in creating a vast amount of paper products, such as papers, paperboards, and even cardboards. Cellulose can also be used as an important fiber as an important material in textiles.</span>
<span>Answer:
The HCl and KOH will react until one or the other is gone. As you have a larger volume of an equal concentration of HCl, the KOH will go first.
moles HCl = 0.04000 L * 0.100 M = 0.00400 moles
moles KOH = 0.02500 L * 0.100 M = 0.00250 moles
moles HCl left = 0.00400 - 0.00250 = 0.00150 moles
Your total volume is now 65.00 mL, so the [HCl] = 0.00150 moles / 0.06500 L = 0.0231 M = [H+]
pH = -log [H+] = -log (0.0231) = 1.64</span>