The acceleration which is gained by an object because of the gravitational force is called its acceleration due to gravity. Its SI unit is m/s2. Acceleration due to gravity is a vector, which means it has both a magnitude and a direction. The formula is ‘the change in velocity= gravity x time’ The acceleration due to gravity at the surface of Earth is represented as g. It has a standard value defined as 9.80665 m/s2.[1]
Answer:
D. provide the most compelling evidence of cause-and-effect relationships.
Explanation:
Answer:

Explanation:
Since work done is in the form of potential energy, we will use the formula of potential energy here.
We know that,
<h3>P.E. = mgh </h3>
Where,
m = mass = 20 kg
g = acceleration due to gravity = 10 m/s²
h = vertical height = 20 m
So,
<h3>Work done = mgh</h3>
Work done = (20)(10)(20)
Work done = 4000 joules
Work done = 4 kJ
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Speed of another player, v₂ = 1.47 m/s
Explanation:
It is given that,
Mass of football player, m₁ = 88 kg
Speed of player, v₁ = 2 m/s
Mass of player of opposing team, m₂ = 120 kg
The players stick together and are at rest after the collision. It shows an example of inelastic collision. Using the conservation of linear momentum as :

V is the final velocity after collision. Here, V = 0 as both players comes to rest after collision.



So, the speed of another player is 1.47 m/s. Hence, this is the required solution.
Answer:
The problem occurs with all spherical mirrors.
Spherical mirrors are practical up to about inches in diameter.
Reflecting telescopes use spherical mirrors for apertures up to about 4 ".
Larger aperture telescopes use parabolic mirrors to obtain sharp focus.