B boiling point https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Map%3A_Introductory_Chemistry_(Tro)/03%3A_Matter_and_Energy/3.05%3A_Differences_in_Matter%3A_Physical_and_Chemical_Properties#Summary
Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]
Answer:
<h2>1.23 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
We have the final answer as
<h3>1.23 moles</h3>
Hope this helps you