Answer:
a) 14.2 atm
b) 4.46 atm
c) 1.06 atm
Explanation:
For an ideal gas,
PV = nRT
P = pressure of the gas
V = volume occupied by the gas
n = number of moles of the gas
R = molar gas constant = 0.08206 L.atm/mol.K
T = temperature of the gas in Kelvin
a) For HF,
P =?, V = 2.5L, n = 1.35 moles, T = 320K
P = 1.35 × 0.08206 × 320/2.5
P = 14.2 atm
b) For NO₂
P =?, V = 4.75L, n = 0.86 moles, T = 300K
P = 0.86 × 0.08206 × 300/4.75
P = 4.46 atm
c) For CO₂
P =?, V = 5.5 × 10⁴ mL = 55L, n = 2.15 moles, T = 57°C = 330K
P = 2.15 × 0.08206 × 330/55
P = 1.06 atm
Answer:
Average speed = 24 km/h
Explanation:
<u>Given the following data;</u>
Uniform speed A = 30 km/h
Uniform speed B = 20 km/h
To find the average speed;
Mathematically, the average speed of an object is given by the formula;
..... equation 1
Total time = TA + TB




Total distance = x + x
Total distance = 2x
Substituting the values into equation 1;



<em>Average speed = 24 km/h</em>
Answer:
Explanation:
Given
Velocity = 388m/s
Height S = 2.89m
Required
Time
Using the equation of motion
S =ut+1/2gt²
2.89 = 388t+1/2(9.8)t²
2.89 = 388t+4.9t²
Rearrange
4.9t²+388t-2.89 =0
Factorize
t = -388±√388²-4(4.9)(2.89)/2(4.9)
t= -388±√(388²-56.644)/9.8
t = -388±387.93/9.8
t =0.073/9.8
t = 0.00744 seconds
No, if the car were moving sideways, then the forces used would be on the horizontal axis. So the weight equation would be extraneous, unless one is determining the net force through an inclined plane