The answer is A. meters (m)
Use the kinematic equation: Vf=Vi+at
Then plug;
Vi=14 m/s
a=5 m/s²
t=20 s. Therefore;
Vf=14+(5*20)
Vf=114 m/s.
Equal to 50
law of reflection: angle of incidence equals angle of reflection
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
Temperature will be 305 K
Explanation:
We have given The asteroid has a surface area 
Power absorbed P = 3800 watt
Boltzmann constant 
According to Boltzmann rule power radiated is given by




So temperature will be 305 K