1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
3 years ago
15

What causes a nebula to collapse into a dense mass?

Physics
1 answer:
bekas [8.4K]3 years ago
6 0
The answer is <span>Gravity.

</span>  Irregularities in the density of the gas causes a net gravitational force

You might be interested in
The orientation of which of the following does not influence the phases of the moon? a. Earth c. Sun b. the moon d. Stars Please
beks73 [17]
I'm pretty sure it's D. The stars don't influence the moon's phases.
6 0
3 years ago
When serving a tennis ball, a player hits the ball when its velocity is zero (at the highest point of a vertical toss). The racq
Lilit [14]

Answer:60 gm

Explanation:

Given

initial velocity of ball u=0

Force exerted by racquet F=540 N

time period of force t=5\ ms

final velocity of ball v=45\ m/s

Racquet imparts an impulse to the ball which is given by

J=F\Delta t=\Delta P

J=540\times \Delta t=m(45-0)

m=\frac{540\times 5\times 10^{-3}}{45}

m=60\ gm

8 0
3 years ago
What is the magnitude of the total acceleration of point A after 2 seconds? The bar starts from rest and has a constant angular
monitta

Answer:

a_total = 2 √ (α² + w⁴) ,   a_total = 2,236 m

Explanation:

The total acceleration of a body, if we use the Pythagorean theorem is

          a_total² = a_T²2 + a_{c}²

where

the centripetal acceleration is

  a_{c} = v² / r = w r²

tangential acceleration

   a_T = dv / dt

angular and linear acceleration are related

         a_T = α  r

we substitute in the first equation

       a_total = √ [(α r)² + (w r² )²]

       a_total = 2 √ (α² + w⁴)

Let's find the angular velocity for t = 2 s if we start from rest wo = 0

        w = w₀ + α t

        w = 0 + 1.0 2

        w = 2.0rad / s

       

we substitute

        a_total = r √(1² + 2²) = r √5

        a_total = r 2,236

In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m

         a_total = 2,236 m

7 0
3 years ago
If the coefficient of kinetic friction between tires and dry pavement is 0.84, what is the shortest distance in which you can st
liberstina [14]

Answer:

The shortest distance in which you can stop the automobile by locking the brakes is 53.64 m

Explanation:

Given;

coefficient of kinetic friction, μ = 0.84

speed of the automobile, u = 29.0 m/s

To determine the  the shortest distance in which you can stop an automobile by locking the brakes, we apply the following equation;

v² = u² + 2ax

where;

v is the final velocity

u is the initial velocity

a is the acceleration

x is the shortest distance

First we determine a;

From Newton's second law of motion

∑F = ma

F is the kinetic friction that opposes the motion of the car

-Fk = ma

but, -Fk = -μN

-μN = ma

-μmg = ma

-μg = a

- 0.8 x 9.8 = a

-7.84 m/s² = a

Now, substitute in the value of a in the equation above

v² = u² + 2ax

when the automobile stops, the final velocity, v = 0

0 = 29² + 2(-7.84)x

0 = 841 - 15.68x

15.68x = 841

x = 841 / 15.68

x = 53.64 m

Thus, the shortest distance in which you can stop the automobile by locking the brakes is 53.64 m

4 0
3 years ago
A car is traveling with a constant speed when the driver suddenly applies the brakes, giving the 14) car a deceleration of 3.50
sergij07 [2.7K]
To be able to determine the original speed of the car, we use kinematic equations to relate the acceleration, distance and the original speed of the car moving. 

First, we manipulate the one of the kinematic equations
 
v^2 = v0^2 + 2 (a) (x)  where v = 0 since the car stopped

Writing the equation in such a way that the initial velocity or v0 is written on one side of the equation,

<span>we get v0 = sqrt (2(a)(x))

Substituting the known values,

v0 = sqrt(2(3.50)(30.0))
v0 = 14.49 m/s 
</span>
Therefore, before stopping the car the original speed of the car would be 14.49 m/s
7 0
3 years ago
Other questions:
  • In gym class you run 22 m horizontally, then climb a rope vertically for 6.2 m. What is the direction angle of your total displa
    14·2 answers
  • Which device requires an electric power supply?
    7·1 answer
  • 48 grams 12cm^3, what would the density of the material be
    11·1 answer
  • When you place leftover food in the refrigerator, what kind of energy do you
    11·2 answers
  • How much work is done by the force lifting a
    5·1 answer
  • If an object's velocity changes from 25 meters per second to
    5·2 answers
  • Which method best helps to prevent wind erosion?
    6·2 answers
  • If 3 cups are sitting outside on a hot summer day, which cup will gain the most heat? Cup A starts a little above freezing, Cup
    10·1 answer
  • DUE IN AN HOUR! HELP!!
    7·1 answer
  • Determine the distance from the Earth's center to a point outside the Earth where the gravitational acceleration due to the Eart
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!