Given,
The initial inside diameter of the pipe, d₁=4.50 cm=0.045 m
The initial speed of the water, v₁=12.5 m/s
The diameter of the pipe at a later position, d₂=6.25 cm=0.065 m
From the continuity equation,

Where A₁ is the area of the cross-section at the initial position, A₂ is the area of the cross-section of the pipe at a later position, and v₂ is the flow rate of the water at the later position.
On substituting the known values,

Thus, the flow rate of the water at the later position is 5.99 m/s
B nitrogen stays in order so it can't change movement
The velocity of the pitcher at the given mass is 0.1 m/s.
The given parameters:
- <em>Mass of the pitcher, m₁ = 50 kg</em>
- <em>Mass of the baseball, m₂ = 0.15 kg</em>
- <em>Velocity of the ball, u₂ = 35 m/s</em>
<em />
Let the velocity of the pitcher = u₁
Apply the principle of conservation of linear momentum to determine the velocity of the pitcher as shown below;
m₁u₁ = m₂u₂

Thus, the velocity of the pitcher at the given mass is 0.1 m/s.
Learn more about conservation of linear momentum here: brainly.com/question/13589460