Answer:
The acceleration of the player is - 4.9 m/s²
Explanation:
The given is:
1. The mass of the player is 55 kg
2. His initial speed is 4.6 m/s
3. The coefficient of the kinetic fraction between the player and the
ground is 0.50
We need to find the player acceleration
According to Newton's Law
→ ∑ forces in direction of motion = mass × acceleration
There is only the friction force opposite to the motion
→ Friction force = μR
where μ is the coefficient of friction and R is the normal reaction
→ The normal reaction R = mg
where m is the mass and g is the acceleration of gravity
→ m = 55 kg , g = 9.8 m/s²
→ R = 55 × 9.8 = 539 N
→ ∑ F = - μR
→ - μR = m × a
→ μ = 0.5 , R = 539 N , m = 55
→ -(0.5)(539) = 55 × a
→ - 269.5 = 55 a
Divide both sides by 55
→ a = - 4.9 m/s²
The acceleration of the player is - 4.9 m/s²
Learn more:
You can learn more about Newton's law in brainly.com/question/11911194
#LearnwithBrainly
Answer:
The deer traveled 1300m + 500m + 300m, for a total distance. The exact same motion, distance and displacement have significantly different values. It tells you the rate at which an object's displacement, or position, changes.
Answer:
The time constant becomes twice.
Explanation:
= Time constant of the L-R circuit
= Inductance of the inductor
= Resistance of the resistor
Time constant of the L-R circuit is given as

= initial time constant of the L-R circuit = 
= final time constant of the L-R circuit
= Initial inductance of the inductor = 
= Initial inductance of the inductor = 
For the same resistance, the time constant depend directly on the inductance, hence
