The answer is B, The speed is constant and the velocity is changing.
It is called air pressure
The answer to your question is metaphase
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>
Answer:
Workdone = 600 Kilojoules
Explanation:
Given the following data:
Time = 8 seconds
Power = 75,000 Watts
Distance = 58 m
To find the work done;
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
Thus, work done is given by the formula;
Workdone = power * time
Workdone = 75000 * 8
Workdone = 600,000 = 600 KJ