B. 0.937 atm
The total pressure of a gas mixture is simply the sum of the partial pressures of each gas within the mixture. So let's add them together: 0.875 atm + 0.0553 atm + 0.00652 atm = 0.93682 atm.
Since we only have 3 significant figures in our data, round the result to 3 figures, giving 0.937 atm, which exactly matches option "B" which is the correct answer.
Answer:
1.68 × 10²³ Molecules
Explanation:
As we know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of particles (molecules) contained by 0.280 moles of Br₂, we will use following relation,
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 0.280 mol × 6.022 × 10²³ Molecules.mol⁻¹
Number of Molecules = 1.68 × 10²³ Molecules
Hence,
There are 1.68 × 10²³ Molecules present in 0.280 moles of Br₂.
In the periodic table the lanthanoid and the actinides are place separately at the bottom because of their electronic configuration and their properties compared to the other elements.
The the lanthanoid and the actinides are place separately at the bottom in the periodic table due to their electronic configuration and the properties. and to make the periodic table more convenient . if we place the f block elements that is he lanthanoid and the actinides then the size of the periodic table will increase. the f block elements are called as the inner transition element.
Thus , to make the periodic table more convenient and to group the elements in the block the the lanthanoid and the actinides are place separately at the bottom.
To learn more about lanthanoid and actinide here
brainly.com/question/24390376
#SPJ4
Well its Organic Chemistry... and is the Fractional Distillation of Crude Oil