Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
Answer:
Either B or D. The answer itself is 2.
Explanation:
The equation for the kinetic energy would be 1/2*mv^2.
When m is doubled, we can plug in 1 and 2 to compare our answers.
Plugging in 1 for mass would give us the answer 1/2*v^2.
Plugging in 2 for mass would give us v^2. This means that the velocity was multiplied by 2, meaning that the answer is it is multiplied by 2.
I am not sure which answer is correct since there seems to be two answer choices with 2 in it, but the answer is either B or D (I will call it ABCD because I do not want to cause confusion by saying 2 multiple times).
Answer:
Time period of the osculation will be 2.1371 sec
Explanation:
We have given mass m = (B+25)
And the spring is stretched by (8.5 A )
Here A = 13 and B = 427
So mass m = 427+25 = 452 gram = 0.452 kg
Spring stretched x= 8.5×13 = 110.5 cm
As there is additional streching of spring by 3 cm
So new x = 110.5+3 = 113.5 = 1.135 m
Now we know that force is given by F = mg
And we also know that F = Kx
So 

Now we know that 
So 

