The question is incomplete, the question is;
Which drawing best accounts for the polarity of methanol, CH3OH, and the bond polarities that make a major contribution to the overall molecular polarity?
A) drawing (1) B) drawing (2)
D) drawing (4) C) drawing (3)
Answer:
B) drawing (2)
Explanation:
In Chemistry, the direction of dipole is shown from positive end to negative end.
The image that contains the options in the question asked has been attached.
We can see in image 2 that the oxygen atom was correctly designated as the negative end of the dipole while the carbon and hydrogen atoms were each designated as positive ends of the dipole in accordance with the magnitude of electronegativity difference between the two atoms. The net dipole moment is now taken in the direction shown in image 2. This is the correct answer.
Answer:
C. The rate of the reaction begins to decrease as the reactants are used.
Explanation:
a p 3 x
<u>Epipelagic </u>zones are warm, well lit, and have lots of marine life.
Explanation:
This is the topmost zone of the oceans extending about 200 meters from the ocean surface. This zone is well lit because sunlight is able to penetrate this layer before it discusses as it penetrates deeper into the ocean. Therefore, this epipelagic zone is able to sustain plankton (that are photosynthetic). Plankton form the base of marine life which is why they support a large marine ecosystem in the epipelagic zone and thie energy flow even to the deeper abyssopelagic zone.
Search Results
Featured snippet from the web
Calculate: Punnett squares can be used to predict probable outcomes of genetic crosses. To calculate probability, divide the number of one kind of possible outcome by the total number of all possible outcomes. For example, if you toss a coin, the chance it will land on heads is equal to 1 ÷ 2.
Answer:
n = 2 moles (1 sig-fig)
Explanation:
Using the Ideal Gas Law equation (PV = nRT), solve for n (= moles) and substitute data for ...
pressure = P(atm) = 100atm
volume =V(liters) = 50L
gas constant = R = 0.08206L·atm/mol·K
temperature = T(Kelvin) = °C + 273 = (35 + 273)K = 308K
PV = nRT => n = PV/RT = (100atm)(50L)/(0.08206L·atm/mol·K)(308K)
∴ n(moles) = 1.978moles ≅ 2 moles gas (1 sig-fig) per volume data (= 50L) that has only 1 sig-fig. (Rule => for multiplication & division computations round final answer to the measured data having the least number of sig-figs).