Answer: Option (3) is the correct answer.
Explanation:
When there is a negative charge on an atom then we add the charge with the number of electrons. Whereas when there is a positive charge on an atom then we subtract the charge from the number of electrons.
Atomic number of chlorine is 17. So, number of electrons present in
is 17 + 1 = 18 electrons.
Atomic number of cobalt is 27. So, number of electrons present in
is 27 - 4 = 23 electrons.
Atomic number of iron is 26. So, number of electrons present in
is 26 - 2 = 24 electrons.
Atomic number of vanadium is 23. So, number of electrons present in V is 23 electrons.
Atomic number of scandium is 21. So, number of electrons present in
is 21 + 2 = 23 electrons.
Thus, we can conclude that out of the given species,
has the greatest number of electrons.
Answer: 25 μg of calcium in a total volume of 57 mL to ppm is 0.4386ppm
Explanation:
Please see the attachments below
Hey there!
Molar mass of magnesium is 24.305.
One mole of magnesium has a mass of 24.305 grams.
We have 1.75 moles.
Multiply 1.75 by 24.305.
1.75 x 24.305 = 42.5
1.75 moles of magnesium has a mass of 42.5 grams.
Hope this helps!
Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>