As the wave length increases the energy of the wave decreases as the equation that relates the c=λυ λ is the wave length and υ is the frequency (which is directly proportional to the energy).
In the wave length spectrum, x-ray has a shorter wave length, meaning that
x-ray has a higher energy than ultraviolet waves.
Hope this helps.
Answer:
Amplitude and wavelength
Explanation:
- The amplitude of a wave is the maximum displacement of the wave, measured with respect to the equilibrium position (so, for a water wave it is the maximum height of the wave relative to the equilibrium position)
- The wavelength of a wave is the distance between two consecutive crests (or throughs) of a wave. So, for a water wave, it is the distance between two consecutive waves
Therefore, in the example in the problem we have:
- 2 meters corresponds to the amplitude
- 35 meters corresponds to the wavelength
A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light. When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight.
We can apply the law of conservation of energy here. The total energy of the proton must remain constant, so the sum of the variation of electric potential energy and of kinetic energy of the proton must be zero:

which means

The variation of electric potential energy is equal to the product between the charge of the proton (q=1eV) and the potential difference (

):

Therefore, the kinetic energy gained by the proton is

<span>And since the initial kinetic energy of the proton was zero (it started from rest), then this 1000 eV corresponds to the final kinetic energy of the proton.</span>