Answer: possibly diffusion
Explanation:
all particles are in motion unless at a certain degree so they'd spread throughout the room diluting as they continue to spread out.
Answer:
Salt domes storage has advantages in cost, security, environmental risk, and maintenance. Salt formations offer the lowest cost, most environmentally secure way to store crude oil for long periods of time. Stockpiling oil in artificially-created caverns deep within the rock-hard salt costs historically about $3.50 per barrel in capital costs. Storing oil in above ground tanks, by comparison, can cost $15 to $18 per barrel - or at least five times the expense. Also, because the salt caverns are 2,000-4,000 feet below the surface, geologic pressures will sea; any crack that develops in the salt formation, assuring that no crude oil leaks from the cavern. An added benefit is the natural temperature differential between the top of the caverns and the bottom - a distance of around 2,000 feet; the temperature differential keeps the crude oil continuously circulating in the caverns, giving the oil a consistent quality.
Here are some examples for those type of reactions.
<span>
Combustion reaction: CH4(g) + 2 O2(g) --> CO2(g) + 2 H2O(l)
</span><span>
Decomposition reaction: CaCO3(s) ---> CaO(s) + CO2(g)
</span><span>Double replacement: AgNO3(aq) + NaCl(aq) ---> AgCl(s) + NaNO3(aq)
</span>One common thing in all is that they are reactions. They have reactants to form new substances called product.
Like all objects, rockets are governed by Newton's Laws of Motion. The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Newton's Third Law states that "every action has an equal and opposite reaction".