Answer:


Explanation:
Given that:
The radius of the table r = 16 cm = 0.16 m
The angular velocity = 45 rpm
= 
= 4.71 rad/s
However, the relative velocity of the bug with turntable is:
v = 3.5 cm/s = 0.035 m/s
Thus, the time taken to reach the bug to the end is:


t = 4.571s
So the angle made by the radius r with the horizontal during the time the bug gets to the end is:



Now, the velocity components of the bug with respect to the table is:





Also, for the vertical component of the velocity 




Answer:
I will graduate on the year 2022
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.