Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.
The relationship between current and voltage and resistance is described by ohlm's law. This equation i=v/r tells that the current i flowing through a circuit is directly proportional to the voltage v, and inversely proportional to resistance r. This desceibes the relationship of voltage, current and resistance.
Answer:

Explanation:
The volume charge density is defined by ρ =
(Equation A), where Q is the charge and V, the volume.
The units in the S.I. are
, so we have to express the radius in meters:
inner radius = 
outer radius = 
Now, we know that the volume of the sphere is calculated by the formula:
, and as we have an spherical shell, the volume is calculated by the difference between the outher and inner spheres:
V =
, where
is the outer radius and
is the inner radius.
Replacing the volume formula in the Equation A:
ρ = 
ρ = 
Replacing the values of the outer and inner radius whe have:
ρ = 
ρ = 
Answer:
(a) 300 ft
(b) 60 ft/s
Explanation:
distance
where a is acceleration and t is time

Also, d=vt where v is the velocity
d=30t
Therefore
hence t=10 s
Substituting t is either formula
d=30t=30*10=300 ft
Also
v=at hence 
Acceleration = change in velocity/time
By F = ma,
6 = 33 x change in velocity / 9
change in velocity = +1.636 m/s