Answer:
1. It dissolves much more ice faster than sodium chloride
2. Calcium chloride is more effective in melting ice at lower temperatures.
Explanation:
Salts are used to melt ice on roadways and sidewalks because they help to lower the freezing point of water.
Sodium chloride and calcium chloride are both salts used for this purpose but calcium chloride is usually preferred for the following two reasons:
1. It dissolves much more ice faster than sodium chloride: Calcium chloride dissolves much more ice faster than sodium chloride because when it dissociates, it produces three ions instead of the two produced when sodium chloride. Therefore, the heat of hydration of its ions is greater than that of sodium chloride.
2. Calcium chloride is more effective in melting ice at lower temperatures. It lowers the freezing point of water more than sodium chloride. Calcium chloride is able to lower the freezing point of water to about -52°C while sodium chloride only lowers it to about -6°C.
Answer:
36g of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction:
2NaOH + H2SO4 —> Na2SO4 + 2H2O
Next, we shall determine the mass of NaOH that reacted and the mass of H2O produced from the balanced equation. This is illustrated below:
Molar mass of NaOH = 23 + 16 + 1 = 40g/mol
Mass of NaOH from the balanced equation = 2 x 40 = 80g
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H2O from the balanced equation = 2 x 18 = 36g.
From the balanced equation above, we can see evidently that:
80g of NaOH reacted to produce 36g of H2O.
When there isn't enough oxygen for Oxidative Phosphorylation to occur, anaerobic respiration occurs. You can't produce ATP across the inner of the mitochondrial membrane or in the Krebs cycle if you don't have Oxidative Phosphorylation. As a result, the yeast employs anaerobic respiration to keep Glycolysis running, resulting in 4 ATP molecules (Net: 2) each Glucose molecule that is converted to Pyruvate.
Allowing NADH to lose hydrogen allows it to be converted to NAD, which can then be utilized to oxidize glucose to pyruvate, which produces ATP, and so on. This is best illustrated in a diagram, in my opinion.
Answer:The lowest value of n that allows g orbitals to exist is 5.
B.
its the only one with ozone in the reaction O₃