Answer:
the work that must be done to stop the hoop is 2.662 J
Explanation:
Given;
mass of the hoop, m = 110 kg
speed of the center mass, v = 0.22 m/s
The work that must be done to stop the hoop is equal to the change in the kinetic energy of the hoop;
W = ΔK.E
W = ¹/₂mv²
W = ¹/₂ x 110 x 0.22²
W = 2.662 J
Therefore, the work that must be done to stop the hoop is 2.662 J
Answer: 1
Explanation: The highest eccentricity an ellipse can have is '1', a straight line.
Immediately following the arrival of the stimulus at a skeletal muscle cell, there is a short period called the latent period during which the events of excitation-contraction coupling occur.
This process is a connection between transduction in the sarcolemma and the initiation of muscle contraction. Sarcolemma is nothing but the cell membrane of skeletal muscle.
A single muscle twitch has a latent period, a contraction phase when tension increases and a relaxation phase when tension decreases.
The period of incubation, the interval preceding exposure to a pathogen toxin or radiation, and when effects occur. Muscle contracting, the time between a nerve stimulus and muscle contraction.
To know more about muscles:
brainly.com/question/13753345
#SPJ4