1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
2 years ago
15

A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 11.1 rad/s in 2.99 s.(a) fi

nd the magnitude of the angular acceleration of the wheel.
Physics
1 answer:
elena55 [62]2 years ago
8 0
The angular acceleration of a rotating object is given by
\alpha =  \frac{\omega_f - \omega_i}{\Delta t}
where
\omega_f is the final angular speed of the object
\omega_i is its initial angular speed
\Delta t is the time taken to accelerate

For the wheel in our problem, \omega_f=11.1 rad/s, \omega_i = 0 and \Delta t=2.99 s, so its angular acceleration is
\alpha= \frac{11.1 rad/s-0}{2.99 s}=3.71 rad/s^2
You might be interested in
PLZZ HELP ASAP!!
Nimfa-mama [501]
Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
8 0
3 years ago
A force of 20 N is executed to raise a rock weighing 30 N. What is the actual mechanical advantage?
xxMikexx [17]
I am absolutely sure its 1.5
5 0
3 years ago
Read 2 more answers
*<br> Check all of the things that can affect power<br><br> Time<br> Work<br> Distance<br> Force
gladu [14]

Answer:

fhddmvxmvydlyghclhchc

3 0
2 years ago
Which of the following is a chemical equation that accurately represents what happens when a sulfur and oxygen are produced from
Ksenya-84 [330]
It's c................
5 0
3 years ago
You pull straight up on the string of a yo-yo with a force 0.35 N, and while your hand is moving up a distance 0.16 m, the yo-yo
jarptica [38.1K]

Answer:

a) 0.138J

b) 3.58m/S

c) (1.52J)(I)

Explanation:

a) to find the increase in the translational kinetic energy you can use the relation

\Delta E_k=W=W_g-W_p

where Wp is the work done by the person and Wg is the work done by the gravitational force

By replacing Wp=Fh1 and Wg=mgh2, being h1 the distance of the motion of the hand and h2 the distance of the yo-yo, m is the mass of the yo-yo, then you obtain:

Wp=(0.35N)(0.16m)=0.056J\\\\Wg=(0.062kg)(9.8\frac{m}{s^2})(0.32m)=0.19J\\\\\Delta E_k=W=0.19J-0.056J=0.138J

the change in the translational kinetic energy is 0.138J

b) the new speed of the yo-yo is obtained by using the previous result and the formula for the kinetic energy of an object:

\Delta E_k=\frac{1}{2}mv_f^2-\frac{1}{2}mv_o^2

where vf is the final speed, vo is the initial speed. By doing vf the subject of the formula and replacing you get:

v_f=\sqrt{\frac{2}{m}}\sqrt{\Delta E_k+(1/2)mv_o^2}\\\\v_f=\sqrt{\frac{2}{0.062kg}}\sqrt{0.138J+1/2(0.062kg)(2.9m/s)^2}=3.58\frac{m}{s}

the new speed is 3.58m/s

c) in this case what you can compute is the quotient between the initial rotational energy and the final rotational energy

\frac{E_{fr}}{E_{fr}}=\frac{1/2I\omega_f^2}{1/2I\omega_o^2}=\frac{\omega_f^2}{\omega_o^2}\\\\\omega_f=\frac{v_f}{r}\\\\\omega_o=\frac{v_o}{r}\\\\\frac{E_{fr}}{E_{fr}}=\frac{v_f^2}{v_o^2}=\frac{(3.58m/s)}{(2.9m/s)^2}=1.52J

hence, the change in Er is about 1.52J times the initial rotational energy

5 0
2 years ago
Read 2 more answers
Other questions:
  • A uniform disk has a mass of 3.7 kg and a radius of 0.40 m. The disk is mounted on frictionless bearings and is used as a turnta
    5·1 answer
  • You walk 60m east and then 20m at 20 degrees south of west. What is your displacement?
    7·1 answer
  • 4. The place on a magnet where the magnet exerts the strongest magnetic force
    8·1 answer
  • A 60-vibration-per-second wave travels 30 meters in 1 second. Its frequency isA) 30 hertz and it travels at 60 m/s.B) 60 hertz a
    9·1 answer
  • 3
    9·1 answer
  • Why are slow-twitch muscles more beneficial than fast-twitch muscles for cardiorespiratory fitness?
    14·2 answers
  • Why are people so rude/
    9·2 answers
  • Which of the following is 8000 written in scientific notation?
    12·1 answer
  • Urgent help needed with Physics
    5·1 answer
  • All 2023 ariya ac synchronous drive motors produce ____% torque at 0 mph for impressive off-the-line acceleration and smooth cru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!