P.E = mgh
This is the formula for potential energy.
This is where m is mass, g is the acceleration due to gravity, and h is height.
All you have to do is multiply all these numbers together.
Bottom of the distillation flask
Explanation:
The solid in the mixture to be separate would be found at the bottom of the distillation flask.
Distillation is a separation technique for differentiating the components of mixtures based on the differences in their boiling points.
- Distillation is used to recover solvents from solution.
- The solutes are then left behind in the flask as the solvent boils out as vapor.
- The solution is boiled in a distillation flask to vaporize the solvent.
- The vapor is made to condense back into liquid by means of a condenser.
- The pure liquid called distillate is collected in the receiver.
- The solute which is the solid remains in the distillation flask
learn more:
Heterogeneous mixtures brainly.com/question/1446244
Pure substances brainly.com/question/1832352
#learnwithBrainly
When a mirror is rotated . . .
-- The incident ray doesn't turn. It's just the line from the source to the mirror.
It would be there, in the same place, even if there was no mirror.
-- The normal turns. It's the line perpendicular to the mirror, so it must turn
with the mirror.
-- Since the normal tuns and the incident ray doesn't, the angle between them
must change. And since the angle of the reflected ray is equal to the angle of
the incident ray, the reflected ray must also turn.
Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Answer:
did you have the same answer to get the best