The net force on the rocket is 846400 N.
Answer:
Explanation:
It is known that weight is the influence of gravitational force acting on any mass of the object. So in the present case, the weighing force given is equal to the gravitational force acting on the rocket. Thus, the gravitational force will be acting towards downward direction. But an upward force is required by the rocket for thrusting purpose and that force is given as upward force. So the net force acting on the rocket is the vector addition of all the forces acting on the rocket. As in this case, only upward and downward force is acting on the rocket. The vector addition will be equal to subtraction of downward acting gravitational force from upward force or force provided by engine.
Net force = Engine force - Gravitational force = 890000-43600=846400 N
So the net force acting on the rocket is 846400 N.
Answer:
B 8-9 because you had to subtract that number or simplify. then your answer is 8-9
That equation is Newton's universal law of gravitation. ... Any two masses exert equal-and-opposite gravitational forces on each other. If we drop a ball, the Earth exerts a gravitational force on the ball, but the ball exerts a gravitational force of the same magnitude (and in the opposite direction) on the Earth.
Answer:
Equation for SHM can be written
V = w A cos w t where w is the angular frequency and the velocity is a maximum at t = 0
V1 = w1 A cos w1 t
V2 = w2 A cos w2 t
V2 / V1 = w2 / w1 since cos X t = 1 if t = zero
V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2
If the velocity is twice as large the period will be 1/2 long
Answer:
Rotational inertia decreases proportional to the decrease in the radius of rotation.
Explanation: