Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force
<u>The possible formulas for impulse are as follows:</u>
J = FΔt
J = mΔv
J = Δp
Answer: Option A, E and F
<u>Explanation:</u>
The quantity which explains the consequences of a overall force acting on an object (moving force) is known as impulse. It is symbolised as J. When the average overall force acting on an object than such products are formed and in given duration than the start fraction force over change in time end fraction J = FΔt.
The impulse-momentum theorem explains that the variation in momentum of an object is same as the impulse applied to it: J = Δp J = mΔv if mass is constant J = m dv + v dm if mass changes. Logically, the impulse-momentum theorem is equivalent to Newton second laws of motion which is also called as force law.
1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4
In some unusual applications of unusual components, I can think of unusual electric circuits where a switch may be connected in parallel with a device in order to control it.
But I'm sure this is not what's intended in a question on the high-school level.
Until you get in a situation with tricky applications in a tricky circuit, your switches will always be connect <em>in series</em> with the devices they control.
Answer:
4.91 x 10⁻⁷ m
Explanation:
the applicable formula is
v = fλ
where
v = velocity (i.e speed) = given as 3.0 x 10⁸ m/s
f = frequency = given asw 6.11 x 10¹⁴
λ = wavelength
if we rearrange the equation and substitute the values given above,
v = fλ
λ = v/f
= 3.0 x 10⁸ / 6.11 x 10¹⁴
= 4.91 x 10⁻⁷ m