<h2>
Answer:</h2>
1000th multiple of the standard reference level for intensities.
<h2>
Explanation:</h2>
The sound intensity level (β), measured in decibels, of a sound with an intensity of I is defined as follows;
β = 10 log (I / I₀) --------------------(i)
Where;
I₀ = reference intensity
Given from the question;
β = sound level = 30dB
Substitute this value into equation (i) as follows;
30 = 10 log (I / I₀)
Divide both sides by 3;
3 = log (I / I₀)
Take antilog of both sides;
10^(3) = (I / I₀)
1000 = I / I₀
Solve for I;
I = 1000I₀
Therefore the intensity of the sound is 1000 times the standard reference level for intensities (I₀)
Can something have energy even if it's not moving?
All moving objects have kinetic energy. When an object is in motion, it changes its position by moving in a direction: up, down, forward, or backward. ... Potential energy is stored energy. Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion).
Does a book at rest have energy?
A World Civilization book at rest on the top shelf of a locker possesses mechanical energy due to its vertical position above the ground (gravitational potential energy).
Does a book lying on a table have energy?
The book lying on a desk has potential energy; the book falling off a desk has kinetic energy.
Weight = Mass * gravity
= 1470* 9.8 = 14406 N ≈ 14,400 N
The momentum of the second ball was 15 kg.m/s.
<h3>What is inelastic collision?</h3>
In which collision some amount of kinetic energy of the system is lost that called inelastic collision. In purely inelastic collision, two bodies stick together. But principle of conservation of linear momentum is obeyed.
In the given question,
Two balls collide and after collision, the final momentum of the system = 18 kg.m/s.
Initial velocity of 1st ball of mass 3 kg is 1 m/s.
So, Initial momentum of first ball = mass × velocity = (3 kg) × (1 m/s) = 3 kg.m/s.
According to Principle of conservation of linear momentum for this inelastic collision,
Initial momentum of first ball + initial momentum of second ball = final momentum of the system
⇒ initial momentum of second ball = final momentum of the system - Initial momentum of first ball
= 18 kg.m/s - 3 kg.m/s.
= 15 kg.m/s.
Hence, initial momentum of second ball = 15 kg.m/s.
Learn more about momentum here:
brainly.com/question/24030570
#SPJ2
ANSWER
Both trucks will move together with speed v = 6.67 m/s
so correct answer will be
The speed of the combined vehicles is less than the initial speed of the truck.
EXPLANATION
As we know that there is no external force on the system of two trucks
So here momentum of the two trucks before collision and after collision will remain same
So here we will have

so here we will have




now we will have


so correct answer will be
The speed of the combined vehicles is less than the initial speed of the truck.