Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N
v₀ = initial speed as tarzan grabs the vine = 5.3 m/s
v = final speed as the tarzan reach the maximum height = 0 m/s
h = maximum height gained by the tarzan
m = mass of tarzan
using conservation of energy
initial kinetic energy = final kinetic energy + potential energy
(0.5) m v²₀ = (0.5) m v² + m g h
(0.5) v²₀ = (0.5) v² + g h
(0.5) (5.3)² = (0.5) (0)² + (9.8) h
h = 1.43 m
Answer:
Power is 1061.67W
Explanation:
Power=force×distance/time
Power=65×9.8×15/9 assuming gravity=9.8m/s²
Power=3185/3=1061.67W
Answer:
yes
Explanation:
this is simple
the horizontal line is adjacent
the vertical line is opposite
recall that cos x=adj/hyp
adj=hyp(cos x)
while opp=hyp(sin x)