Answer:
Collisions are basically two types: Elastic, and inelastic collision. Elastic collision is defined as the colliding objects return quickly without undergoing any heat generation. Inelastic collision is defined as the where heat is generated, and colliding objects are distorted.
In elastic collision, the total kinetic energy, momentum are conserved, and there is no wasting of energy occurs. Swinging balls is the good example of elastic collision. In inelastic collision, the energy is not conserved it changes from one form to another for example thermal energy or sound energy. Automobile collision is good example, of inelastic collision.
Time=50s
speed=25m/s
Distance = speed×time
=25×50
=1250m
DISTANCE TRAVELLED IS =1250m
Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
The answer is : D
Reasoning:
Homeostasis is the body’s balance
The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>