Answer:
4 moles of water
Explanation:
this is a combustion reaction, so the balanced equation is: 2C2H6 + 7O2 → 4CO2 + 6H2O.
the molar mass of C2H6 is 30.07g, so 40.0 g of C2H6 is 1.33 moles of C2H6.
mole ratio of H2O to C2H6 is 6/2, or 3.
1.33 moles C2H6 * 3 moles H2O/1 mole C2H6 = 4 moles H2O
Answer:
12 %
Explanation:
Produces 15 J of work for input 125 J
15/125 * 100% = 12%
Answer:
Look at the properties of Oxygen and Silicon - the two most abundant elements in the Earth's crust - by clicking on their symbols on the Periodic Table.
Explanation:
The monochloroderivatives will be obtained by substituting chemically non equivalent hydrogen with chlorine atom, one by one
So the possible monochloro derivatives of 2,4-dimethylpentane (figure 1) are shown in figure (2)
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.