1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry
I believe it is -1.11 m/s^2. I will let you know if its correct
Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 