Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.
While the answer is that it does, it transmits light VERY poorly. Most of the light bounces off it and the rest is refracted into the ocean. This is why you can't see much that is far away from you in the ocean unlike if you're just on land.
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building
C. 2000 calories.
Explanation/calculation:
Specific heat capacity = calories / mass * (final temperature - initial temperature)
1 = calories / 100 * (60 - 40)
1 = calories / 100 * 20
1 * (100 * 20) = calories
1 * 2000 = calories
2000 = calories
Answer:

Explanation:
According to Newton's Second Law of Motion, force is the product of mass and acceleration.

The mass of the stone is 0.2 kilograms and the acceleration is 10.0 meters per square second.
Substitute the values into the formula.

Multiply.

Convert the units.
- 1 kilogram meter per square second (kg*m/s²) is equal to 1 Newton (N)
- Our answer of 2 kg*m/s² is equal to 2 N

The force is <u>2 Newtons.</u>