Answer:
V = f λ speed of wave in terms of frequency and wavelength
t = S / V time for wave to travel a distance S
t = 91.4 m / 344.5 m/s = .265 sec time to travel 91.4 m
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ
Answer:
option D
Explanation:
given,
A conductor is carrying current = 2.0 A is 0.5 mm thick
Hall voltage = 4.5 x 10-6 V
uniform magnetic field = 1.2 T
density of the charge = n =?
hall voltage =


n = 6.67 × 10²⁷ charges/m
hence the correct answer is option D
<span>At this distance, and with an orbital speed of 24.077 km/s, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a orbit around the Sun. This eccentricity is one of the most pronounced in the Solar System, with only Mercury having a greater one (0.205).
686.971 rounds to 687
HOPE I HELPED!</span>
Answer:
induced electromotive force (Voltage) E = - N dΦ / dt
Explanation:
When the magnetic flux this coil induces a current in each turn of the coil, which is why an induced electromotive force (Voltage) appears at the ends of the coil.
This phenomenon is fully explained by Faraday's law
E = - dΦ / dt
where in the case of a coil with N turns of has
E = - N dΦ / dt
Rl flux is the product of the normal to the area by the magnetic field, in this case the flux changes so we can assume that the area of the coil is constant