I think the correct answer from the choices listed above is the second option. For endothermic reactions, the reactants have less energy than the products. Which would mean that energy should be added to the reaction for it to proceed. Hope this answers the question.
Explanation:
Below is an attachment containing the solution.
Answer:
a) 141.6m
b) 8.4m/s
Explanation:
a) to find the total displacement you use the following formula for each trajectory. Next you sum the results:

hence, the total distance is 141.6m
b) the mean velocity of the total trajectory is given by:

hence, the mean velocity is 8.4 m/s
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave