Answer:

Explanation:
given,
F = 14.1 i + 0 j + 5.1 k
displacement = 6 m
Assuming block is moving in x- direction
we know,
dW = F dx


![W = F[x]_0^6](https://tex.z-dn.net/?f=W%20%3D%20F%5Bx%5D_0%5E6)


hence, work done by the force is equal to 
Explanation:
It is given that,
Density of asteroid, 
Mass of asteroid, 
We need to find the diameter of the asteroid. The formula of density is given by:

V is the volume of spherical shaped asteroid, 



r = 2441311.12 m
Diameter = 2 × radius
d = 4882622.24 m
or

Hence, this is the required solution.
Answer:
Answer:
Q_1 = 7Q
1
=7
Q_2 = 10Q
2
=10
Q_3 = 13.5Q
3
=13.5
Step-by-step explanation:
Given
5, 7, 7, 8, 10, 11, 12, 15, 17.
Required
Determine Q1, Q2 and Q3
The number of data is 9
Calculating Q1:
Q1 is calculated as:
Q_1 = \frac{1}{4}(N + 1)Q
1
=
4
1
(N+1)
Substitute 9 for N
Q_1 = \frac{1}{4}(9 + 1)Q
1
=
4
1
(9+1)
Q_1 = \frac{1}{4}*10Q
1
=
4
1
∗10
Q_1 = 2.5th\ itemQ
1
=2.5th item
This means that the Q1 is the mean of the 2nd and 3rd data.
So:
Q_1 = \frac{1}{2}(7+7)Q
1
=
2
1
(7+7)
Q_1 = \frac{1}{2}*14Q
1
=
2
1
∗14
Q_1 = 7Q
1
=7
Calculating Q2:
Q2 is calculated as:
Q_2 = \frac{1}{2}(N + 1)Q
2
=
2
1
(N+1)
Substitute 9 for N
Q_2 = \frac{1}{2}(9 + 1)Q
2
=
2
1
(9+1)
Q_2 = \frac{1}{2}*10Q
2
=
2
1
∗10
Q_2 = 5th\ itemQ
2
=5th item
Q_2 = 10Q
2
=10
Calculating Q3:
Q3 is calculated as:
Q_3 = \frac{3}{4}(N + 1)Q
3
=
4
3
(N+1)
Substitute 9 for N
Q_3 = \frac{3}{4}(9 + 1)Q
3
=
4
3
(9+1)
Q_3 = \frac{3}{4}*10Q
3
=
4
3
∗10
Q_3 = 7.5th\ itemQ
3
=7.5th item
This means that the Q3 is the mean of the 7th and 8th data.
So:
Q_3 = \frac{1}{2}(12+15)Q
3
=
2
1
(12+15)
Q_3 = \frac{1}{2}*27Q
3
=
2
1
∗27
Q_3 = 13.5Q
3
=13.5