Answer:
B. as a food preservative in the manufacture of detergents
.........
Explanation:
Carbon-12 atoms have stable nuclei because of the 1:1 ratio of protons and neutrons.
Carbon-14 atoms have nuclei which are unstable. C-14 atoms will undergo alpha decay and produce atoms of N-14. Carbon-14 dating can be used to determine the age of artifacts which are not more than 50,000 years old.
Answer:
d- 334 kJ/g.
Explanation:
You can detect it from the units of the different choices.
a- has the unit J/g.°C that is the unit of the specific heat capacity (c).
b- has the unit Kelvin that is the unit of temperature.
c- has the unit g/mol which is the unit of the molar mass.
d- has the unit kJ/g which is the unit of the enthalpy divided by the no. of rams that is the specific entha;py of fusion.
<em>So, the right choice is: d- 334 kJ/g.</em>
Answer:
Mass = 76.176 g
Explanation:
Given data:
Mass of lead(II) chloride produced = 62.9 g
Mass of lead(II) nitrate used = ?
Solution:
Chemical equation:
Pb(NO₃)₂ + 2HCl → PbCl₂ + 2HNO₃
Number of moles of lead(II) chloride:
Number of moles = mass/molar mass
Number of moles = 62.9 g/ 278.1 g/mol
Number of moles = 0.23 mol
Now we will compare the moles of lead(II) chloride with Pb(NO₃)₂ from balance chemical equation:
PbCl₂ : Pb(NO₃)₂
1 : 1
0.23 : 0.23
Mass of Pb(NO₃)₂:
Mass = number of moles × molar mass
Mass = 0.23 mol × 331.2 g/mol
Mass = 76.176 g
Answer:
dipole-dipole forces, ion-dipole forces, higher molar mass, hydrogen bonding, stronger intermolecular forces
Explanation:
<em>1. H₂S and H₂Se exhibit the following intermolecular forces: </em><em>dipole-dipole forces </em><em>and </em><em>ion-dipole forces</em><em>.</em> These molecules have a bent geometry, thus, a dipolar moment which makes them dipoles. When they are in the aqueous form they are weak electrolytes whose ions interact with the water dipoles
<em>2. Therefore, when comparing H₂S and H₂Se the one with a </em><em>higher molar mass</em><em> has a higher boiling point.</em> In this case, H₂Se has a higher boiling point than H₂S due to its higher molar mass.
<em>3. The strongest intermolecular force exhibited by H₂O is </em><em>hydrogen bonding</em><em>. </em>This is a specially strong dipole-dipole interaction in which the positive density charge on the hydrogens is attracted to the negative density charge on the oxygen.
<em>4. Therefore, when comparing H₂Se and H₂O the one with </em><em>stronger intermolecular forces</em><em> has a higher boiling point. </em>That's why the boiling point of H₂O is much higher than the boiling point of H₂Se.