To what question please put the question ill be glad to help
You are given a fixed rate of 15.9 cm³/s. You are also given with the amount of volume in 237 cm³. Through the approach of dimensional analysis, you can manipulate through operations such that the end result of the units must be in seconds. The solution is as follows:
237 cm³ * (1 s/15.9 cm³) = 14.9 seconds
Electrostatic forces between charges depend on the product of
the sizes of the charges, and the distance between them.
We should also mention the item about whether the charges are
both the same sign or opposite signs. That determines whether
the forces will pull them together or push them apart, which is a
pretty significant item.
Answer:
Vc = 2.41 v
Explanation:
voltage (v) = 16 v
find the voltage between the ends of the copper rods .
applying the voltage divider theorem
Vc = V x (
)
where
- Rc = resistance of copper =
(l = length , a = area, ρ = resistivity of copper)
- Ri = resistance of iron =
(l = length , a = area, ρ₀ = resistivity of copper)
Vc = V x (
)
Vc = V x (
)
Vc = V x (
)
where
- ρ = resistivity of copper = 1.72 x 10^{-8} ohm.meter
- ρ₀ = resistivity of iron = 9.71 x 10^{-8} ohm.meter
Vc = 16 x (
)
Vc = 2.41 v
Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.