Answer:
Applications of zeroth law of thermodynamics:
1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.
2. We keep things in the fridge and those things come equilibrium with fridge temperature.
3. Temperature measurement with a thermometer or another device.
4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.
5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.
Answer:
KE = 2.535 x 10⁷ Joules
Explanation:
given,
angular speed of the fly wheel = 940 rad/s
mass of the cylinder = 630 Kg
radius = 1.35 m
KE of flywheel = ?
moment of inertia of the cylinder

=
= 574 kg m²
kinetic energy of the fly wheel

KE = 2.535 x 10⁷ Joules
the kinetic energy of the flywheel is equal to KE = 2.535 x 10⁷ Joules
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Answer:
a) There are 100 centimeters in 1 meter.
b) 
Explanation:
a) We have the conversion
1 m = 100 cm
So there are 100 centimeters in 1 meter.
b) 1 inch = 2.54 cm


As we know that electrostatic force between two charges is given as

here we know that electrostatic repulsion force is balanced by the gravitational force between them
so here force of attraction due to gravitation is given as

here we can assume that both will have equal charge of magnitude "q"
now we have



now we have
