Answer:
Q = 913.9 gpm
Explanation:
The Hazen Williams equation can be written as follows:

where,
P = Friction Loss per foot of pipe =
= 4 x 10⁻⁴
Q = Flow Rate in gallon/min (gpm) = ?
d = pipe diameter in inches = (400 mm)(0.0393701 in/1 mm) = 15.75 in
C = roughness coefficient = 100
Therefore,

<u>Q = 913.9 gpm</u>
Answer:
Option C is the untrue statement.
"<span>The current is the same at all points" is the one among the following choices given in the question that answers the question correctly. The correct option among all the options that are given in the question is the fifth option or the last option. I hope that this is the answer that has come to your desired help.</span>
Yes i think so im pretty sure
The final velocity before takeoff is 104.96 m / s.
<u>Explanation:</u>
The last velocity of a given object over some time defines the final velocity. The final velocity of the object is given by the product of acceleration and time and adding this product to the initial velocity.
To calculate the final velocity,
V = u + at
where v represents the final velocity,
u represents the initial velocity,
a represents the acceleration
t represents the time taken.

v = 104.96 m / s.